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Preface

C++ is the first object-oriented programming language which produces sufficiently
cient code for consideration in computation-intensive physics and engineering ap
tions. In addition, the increasing availability of massively parallel architectures requ
novel programming techniques which have proven to be relatively easy to impleme
C++. For these reasons, Division 9231 at Sandia National Laboratories is devoting co
erable resources to the development of C++ libraries.

This document describes the first of these libraries to be released, PHYSLIB, whic
fines classes representing Cartesian vectors and (second-order) tensors. This libra
sists of the header filephyslib.h and the source filephyslib.C . The library is
applicable to one-dimensional, two-dimensional, and three-dimensional problems
user selects the dimensionality of the library by defining the appropriate preproce
symbol (ONE_D, TWO_D, orTHREE_D) when compilingphyslib.C  and his own code.

This code was produced under the auspices of Sandia National Laboratories, a fed
funded research center. This code is available to U.S. citizens and institutions und
search, government use and/or commercial license agreements.

The PHYSLIB library is 1991, 1994 Sandia Corporation.
7
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Summary

PHYSLIB defines the following classes:

class Vector Cartesian vectors

class Tensor Cartesian 2nd-order tensors

class SymTensor Cartesian 2nd-order symmetric tensors

class AntiTensor Cartesian 2nd-order antisymmetric tensors

Methods that are defined for these classes include the following:

Dot and outer products

Cross products for vectors

Other arithmetic operations

Duals (dot or double dot product with the permutation symbol)

Trace of tensors

Transpose of tensors

Determinants and inverses of tensors

Symmetric and antisymmetric part of tensors

Scalar invariants of tensors

Norms

Colon operator (scalar product of tensors)

Deviatoric part of tensors

Equality comparisons of vectors and tensors

Standardized stream I/O for vectors
9
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1. Introduction

Almost every branch of theoretical physics makes use of the concepts ofvectorsandten-
sors. Vectors are conceptually simple; they are quantities having both magnitude an
rection, such as the velocity of a particle. Tensors are conceptually more difficult. T
represent rules that relate one set of vectors to another, and they appear in many p
formulae.

This document briefly reviews the mathematics of vectors and tensors; discusses the
difficulties in translating vector and tensor equations into computer code; and desc
how the C++ programming language has been used to alleviate these difficulties, th
producing reliable, reusable, and transparent computer code at a much reduced cost
grammer effort.

1.1 Vector and Tensor Operations and Notation

We briefly review the basic concepts and language of vectors and tensors. A more
plete discussion can be found in [2].

1.1.1 Vectors

A vector is a physical quantity such as velocity that has both a magnitude (“five hun
km/sec”) and a direction (“towards the northeast”). It may be written as a lowercase
bol with an arrow over it, such as . Quantities such as temperature or mass that have
nitude but no direction are calledscalars and are represented by lowercase symb
without an arrow, such as .

The magnitude ornorm of a vector is written as and is a scalar, while its directio
may be written as . The direction of a vector is itself a vector with magnitude 1 (call
unit vector).

A vector may be multiplied by a scalar. The result is a vector with the same directio
the original vector and with a magnitude equal to the product of the scalar and the m
tude of the original vector. That is,

(1)

If , the resulting vector has the opposite direction from the original vector.

Vectors may be added to or subtracted from each other; they obey the same algebrai
as real numbers under addition and subtraction. Vector addition may be visualized b
turing each vector as an arrow with a length equal to its magnitude, as illustrated be

v

a

a a

â

if b ca then b c a and b̂ â±= = =

c 0<
11
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Figure  1. Addition of Vectors

The opposite of a vector is a vector with the same length but in the opposite directio

Vectors may not be multiplied in the same sense as real numbers. However, several
tions exist which are distributive and which are therefore spoken of as “products”. Thin-
ner product (or dot product) of two vectors is a scalar and is written

(2)

It is defined as the product of the magnitudes of the two vectors and the cosine of the
between them, that is,

. (3)

Thus, the dot product is zero if the vectors are perpendicular. The dot product isdistribu-
tiveandcommutative,that is,

(4)

(5)

Theouter product of two vectors is a tensor; it is discussed below.

1.1.2 Tensors

A tensor is a rule that turns a vector into another vector, and it is represented symbol
by a boldface capital letter, such as . We write

(6)

to indicate that when the tensor is applied to the vector , it returns the vector . No
rules that turn vectors into other vectors are tensors; a tensor must be linear, that is, i
be true for all , , and  that

(7)

a

b

a b+

a b•

a b• a b θabcos=

a

b

θab

a b c+( )• a b• a c (Distributive law)•+=

a b• b a (Commutative law)•=

A

a Ab=

A b a

a b c

A a b+( ) Aa Ab+=
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. (8)

It is customary to regard the vector in Equations (6) as the product of the tensor
the vector . We say that the vector isleft-multipliedby the tensor . It is also possible
to write expressions of the form

(9)

in which the vector  isright-multipliedby the tensor . If

(10)

for all vectors , we say that  is thetransposeof  and write

. (11)

Tensors may be added and subtracted according to the usual algebraic rules. Addi
defined such that

(12)

The product of two tensors is defined such that

(13)

The outer product of two vectors is a tensor and may be written

(14)

It is defined by

(15)

Note that the outer product is not commutative, unlike the inner product, since

(16)

Many derived quantities in physics are expressed as tensors. For example, we obs
the laboratory that a reflective surface exposed to a set of light sources feels a force
depends on the orientation and area of the surface. If we form a vector whose mag
is equal to the surface area and whose direction is perpendicular to the surface, w
that the force experienced by the surface is given by

(17)

A ca( ) cAa=

a A
b b A

c bA=

b A

Aa aB=

a A B

A BT=

A B C iff Aa+ Ba Ca for all a+= =

A BC iff Aa B Ca( ) for all a= =

A a b⊗=

A a b iff Ac⊗ b c•( )a for all c= =

a b⊗ b a⊗( )T=

s

f Ps=
13
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where is a tensor (the radiation pressure tensor) which depends only on the intensi
location of the light sources relative to the location of the reflective surface.

Likewise, consider a body subjected to deformation. Let the displacement between
nearby particles in the undeformed body be represented by the vector and the dis
ment between the same two particles after deformation be represented by the vec
The two vectors are related by the expression

(18)

where is called the Jacobian tensor. We note that may be different at different poi
the body.

1.1.3 Symmetric and Antisymmetric Tensors

Many tensors important in physics aresymmetric; that is,

(19)

 Likewise, there are important tensors which areantisymmetric, having the property

. (20)

If a tensor is known to have one of these symmetry properties, calculations involving
tensor can usually be simplified. In addition, it is sometimes useful to split a full ten
into symmetric and antisymmetric parts via the formulae

(21)

(22)

It is easily verified that these two tensors have the indicated symmetry properties an
.

1.1.4 Vector and Tensor Components; Indicial Notation

Computers are unable to handle vectors and tensors directly. Their hardware is desig
add, subtract, multiply, and divide representations of real numbers.

Fortunately we can represent vectors and tensors as sets of real numbers. Howeve
so, we must establish an arbitraryframe of reference. We do this by selecting three mutua
ly orthogonal directions , , and . These correspond to the x, y, and z axes of a Car
coordinate system. We can then express any vector in the form

(23)

P

u

u'

u' Ju=

J J

AT A=

AT A–=

Sym A( )
1
2
--- A A T+( )=

Anti A( )
1
2
--- A A T–( )=

A Sym A( ) Anti A( )+=

x̂ ŷ ẑ

a a1x̂ a2ŷ a3ẑ+ +=
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The three numbers , , and (thecomponentsof the vector) are real numbers and ca
be processed by a computer. Using Equation (23), we can represent any vector ope
as a sequence of operations on sets of real numbers. We use the symbol to repres
set of real numbers , , and .

Some computers are optimized to perform calculations on sets of real numbers; com
scientists refer to these as vector computers, but the word “vector” is not being used
sense understood by physicists.

We can write any tensor in the form

(24)

Thus, a computer can treat a tensor as if it was an array of nine real numbers. Thes
numbers are spoken of as thecomponentsof the tensor. We represent this set of numbe
by the symbol .

We thus have a way to handle vectors and tensors on computers, but at a price: we m
place each vector and tensor by a set of real numbers and each vector or tensor op
by a (possibly extensive) sequence of operations on sets of real numbers. This seque
operations is written usingindicial notation.For example, the inner or dot product of tw
vectors is written in symbolic notation as

. (25)

It can be written in indicial notation as

. (26)

where and are the components of the vectors and . Proofs of the equivalen
the symbolic and indicial representations of vector operations will not be presented in
report.

1.1.5 Einstein Summation Convention

Sums over all values of an index, such as Equation (26), are so common that it is cu
ary to adopt the Einstein summation convention. Under this convention, any term in w
an index is repeated, such as , is interpreted to mean a sum over all values of the
. That is,

(27)

a1 a2 a3

ai

a1 a2 a3

A A11 x̂ x̂⊗( ) A12 x̂ ŷ⊗( ) A13 x̂ ẑ⊗( )+ +=

+ A21 ŷ x̂⊗( ) A22 ŷ ŷ⊗( ) A23 ŷ ẑ⊗( )+ +

+ A31 ẑ x̂⊗( ) A32 ẑ ŷ⊗( ) A33 ẑ ẑ⊗( )+ +

Aij

r a b•=

r aibi

i 1=

3

∑=

ai bi a b

aibi

i

aibi (Einstein convention) aibi (ordinary usage)
i 1=

3

∑⇔
15
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If more than one index is repeated, we have a multiple sum, e.g.,

. (28)

We use the Einstein summation convention throughout this report.

1.1.6 Dimensionality

Physical space is three-dimensional. However, in many situations there are translatio
rotational symmetries that reduce the effective dimensionality. PHYSLIB has there
been written to accomodates 1-D, 2-D and 3-D calculations. The programmer selec
dimensionality by defining eitherONE_D, TWO_D, or THREE_Das a preprocessor symbo
in the command line to the C++ compiler.

By selectingONE_Dor TWO_D, the programmer eliminates certain components from
vector and tensor representations that are always zero in these cases. For example
ONE_D, only the component of the vector can be nonzero. The elimination of unu
vector and tensor components reduces memory usage and increases run-time perfor

An integer constant, DIMENSION, is set to the number of dimensions (1, 2 or 3) sele
by the programmer.

aiBij cj (Einstein convention) aiBij cj (ordinary usage)
j 1=

3

∑
i 1=

3

∑⇔

x
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1.2 The C++ Programming Language

One of the characteristics of computational physics programs is their growing comple
It is not now uncommon for a production code to exceed one hundred thousand lin
length when written in traditional programming languages such as FORTRAN. Such
codes are also found in the areas of advanced graphics and operating systems.

Large codes are extremely difficult to manage. However, experience shows that prop
of hierarchiescan reduce the complexity of large codes by orders of magnitude. C++ i
excellent language for large codes because it fully supports procedure hierarchies, n
hierarchies, and inheritance hierarchies [1].

C++ is also the first high-level language with object-oriented capability to become wi
popular. Because well-written C++ code approaches the efficiency of conventional C
ing, C++ may prove to be the language of choice for large scientific computing projec
description of the C++ language is beyond the scope of this report. However, we b
describe the advantages of C++ below.

The definitive feature of C++ is theclass. This is essentially a programmer-defined da
type that supplements the standard data types (such asint , float , or double ) that are
part of the language. A class isdeclared, usually in a header file, at which time the compi
er knows its characteristics; individual variables orinstancesof the class may then be de
clared by the programmer.

1.2.1 Data Abstraction

A class declaration typically includesdata membersand specifies member access rule.
The data members are a set of floating numbers, integers, pointers, or instances of s
classes. For example, a class representing complex numbers would probably conta
floating variables as data members: one for the real and one for the imaginary part
complex number. Each time a variable of a given class is declared, enough memory
aside to hold its data members.

Classes enforce data abstraction. Generally speaking, the data members of a class
rectly accessible only to a set of functions enumerated within the class definition. T
functions are the only place where an instance of a class is not viewed as a coherent
The PHYSLIB library is built around the concept of data abstraction.

1.2.2 Special Member Functions and Dynamic Memory Management

The special member functions of a class are utility functions that create, destroy, or a
values to an instance of a class. Thus, whenever a class variable is declared, a cons
function is called to initialize the object. Likewise, when a class variable goes out of s
and is no longer needed, a destructor is called to do any necessary cleanup before its
ory is freed. This makes it possible to carry out sophisticated dynamic memory man
ment in a transparent manner. For example, a large array of floating numbers c
represented by a class with constructor and destructor functions. The constructor
17
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tions, which are automatically called when a variable of the array class is declared, c
locate the appropriate amount of memory. The destructor, which is automatically c
when the variable goes out of scope, can return the memory to the system. The pro
mer sees none of this; he only writes a constructor and destructor function, and the
piler sees to it that they are called at the appropriate times.

PHYSLIB does not make use of such memory management mechanisms, but futu
ports will discuss how memory management is carried out in more sophisticated cl
used in RHALE++.

If a class has no constructor functions, the compiler simply allocates memory for the
members whenever an instance of the class is declared. Likewise, if a class has no d
tor function, the compiler simply frees the memory allocated for an instance of a c
when it goes out of scope.

Other special member functions may be declared to assign values to an object. For
ple, an instance of an array class would need to free its old storage area before allo
new memory to receive a new value. If no assignment function is declared for a clas
compiler simply copies the values of all the data members when an assignment is m

1.2.3 Function and Operator Overloading

When data abstraction is implemented in less sophisticated programming language
code tends to dissolve into many calls to a few privileged routines that manipulate ind
ual components of the various data structures. Many of these routines implement d
operations on the data structures that could just as well be represented by arithmetic
ators. For example, if data structures representing complex numbers are used in a
gram, there will be many calls to functions that implement complex addition
multiplication.

The C++ language permits programmers tooverloadthe standard set of operator symbol
For example, the programmer can declare that the ‘*’ operator represents complex m
plication when applied to complex variables. This adds a new context-dependent me
to this symbol. The compiler can distinguish whether the ‘*’ represents ordinary float
point multiplication or complex multiplication by examining the type of its operands.

When an overloaded operator is used in this manner, the compiler replaces it with a c
the appropriate function defined by the programmer. Thus, the actual machine code
ated is not much different than that described above for a C program. However, the code
the programmer writes is much more aesthetically pleasing; and, when another pro
mer is trying to read and understand the code, aesthetics is everything.

The C++ language permits programmers to overload function names as well as ope
Every function declaration includes the argument list, as with ANSI C. However, m
than one function with a given name can exist if they have different argument lists. W
one of the functions is called, the compiler selects the correct function based on the
18
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by that name, the compiler reports an error.

Consider this example of a C code:

#include <math.h>

#include "complex.h"

main(){

struct Complex a = {3., 2.5}, b = {2., 0.}, c;

c = CSqrt(CAdd(CMult(a,a), CMult(b,b)));

fprintf("The result is %f, %f\n", c.Real, c.Imag);

}

This short program evaluates and prints a complicated complex expression. Note the
function calls needed to implement data abstraction.

In C++ one might have

#include <math.h>

#include "complex.h"

main(){

Complex a(3., 2.5), b(2., 0.), c;

c = sqrt(a*a + b*b);

fprintf("The result is %f, %f\n", c.Real(), c.Imag());

}

This illustrates how the function calls have been replaced by more transparent operat
tation. The actual machine code generated by the compiler replaces the operators w
appropriate function calls. In addition, thesqrt() function has been overloaded; the tw
versions aredouble sqrt(const double) andComplex sqrt(const Com-
plex) . The first version takes and returns floating point numbers, while the second
and returns complex numbers. In the program above, the second version has been
which the compiler correctly recognizes from the fact thata*a + b*b is an expression
with typeComplex .
19
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2. The PHYSLIB Library

The PHYSLIB library consists of two files: a header file,physlib.h , and a C++ source
file, physlib.C .

The header file contains C++ code that defines the four classes described below. It m
included at the start of any C++ program that wishes to use these classes. The sou
contains a few large functions that are not appropriate for inlining, and it is compiled
linked with the users’ code.

Inlining is a way to reduce computation time at the cost of increased memory usage
inline function is not actually called whenever it is referenced; instead, a local copy o
function body is inserted in the calling routine by the compiler. This eliminates the o
head associated with making a function call and permits global optimizations (suc
vectorization) that are normally inhibited by function calls. The trade-off is that there
numerous local copies of the function in the code rather than one global copy. If the
tion is very simple and is called many times, as is usually the case for PHYSLIB fu
tions, the savings in computation time are worth the increase in memory usage.

In each case, the reference frame is implied by the values used to initialize the vecto
tensors in a calculation. In addition, it is assumed that all floating numbers are repres
in double precision. This is wasteful on intrinsically double-precision machines such
Cray; the Cray version of the library will replacedouble  with float  everywhere.

2.1 class Vector

This class represents Cartesian vectors, which are quantities having both magnitud
direction.

Symbolic Notation: Indicial Notation:

2.1.1 Private Data Members

double x; X component of vector ( )

double y; Y component of vector ( )

double z; Z component of vector ( )

The Z component is required even in the 2-D version of the library. This is beca
RHALE++ and some other finite element codes use a rotation algorithm that requires
tors with Z components.

2.1.2 Special Member Functions

 Vector(void);

a ai

a1

a2

a3
21
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Sample code:

Vector a; // Default constructor called

// when a is declared

This is the default constructor for instances of theVector class. It does nothing
to initialize the vector. It is declared only to let the compiler know that initializ
tion can be skipped.

 Vector(const double, const double, const double);

Sample code:

Vector a(5., 6., 2.);

Construct a vector with the given components.

Vector(const Vector&);

Sample code:

Vector a;

Vector b = a; // Construct and initialize

This is the copy constructor for objects of class Vector. It is defined mainly to
hance vectorization on CRAY computers.

Vector& operator=(const Vector&);

Sample code:

Vector a, b;

a = b;

This is the assignment operator for objects of class Vector. It is defined main
enhance vectorization on CRAY computers.

 double X(void) const;

Symbolic notation: Indicial notation:

Sample code:

a x̂• a1
22
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Vector a;

printf("The X component of a is %f\n", a.X());

 double Y(void) const;

Symbolic notation: Indicial notation:

Sample code:

Vector a;

printf("The Y component of a is %f\n", a.Y());

 double Z(void) const;

Symbolic notation: Indicial notation:

Sample code:

Vector a;

printf("TheZ component of a is %f\n", a.Z());

 void X(const double);

Symbolic notation: None Indicial notation:

Sample code:

Vector a;

a.X(2.); // set X component of a to 2.

 void Y(const double);

Symbolic notation: None Indicial notation:

Sample code:

Vector a;

a.Y(2.); // set Y component of a to 2.

 void Z(const double);

a ŷ• a2

a ẑ• a3

a1 s←

a2 s←
23
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Symbolic notation: None Indicial notation:

Sample code:

Vector a;

a.Z(2.); // set Z component of a to 2.

Provide access to the components of a vector. This is required chiefly for I/O
is also a means for letting future classes work with vectors without requirin
huge list of friend functions in the vector class definition. It does not violate
idea of data abstraction, since nonprivileged functions must still access the
ponents of a vector through a functional interface.

2.1.3 Utility Functions

int fread(Vector&, FILE*);

int fwrite(const Vector&, FILE*);

int fread(Vector*, int, FILE*);

int fwrite(const Vector*, const int, FILE*);

Sample code:

Vector a, b, c[2], d[5];

FILE* InFile, OutFile;

fread (a, InFile);

fread (c, 2, InFile);

fwrite (b, OutFile);

fwrite (d, 5, OutFile);

These overloads provide a convenient interface to thefread() andfwrite()
library functions for binary input/output. The second version of each is inten
for arrays of vectors (e.g.,Vector c[2];  declares an array of two vectors).

These functions were written to be as consistent as possible with the stan
fread() andfwrite() functions. Thus, they are friends rather than memb
functions, and the integer returned is the number of objects read or written.

a3 s←
24
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2.2 class Tensor

This class represents general Cartesian 2nd-order tensors. In the 2-D version, the of
onal z terms , , , and are omitted. The diagonal z term, , is needed in
finite element codes.

Symbolic notation: Indicial notation:

2.2.1 Private Data Members

double xx; xx component of tensor ( )

double xy; xy component of tensor ( )

double xz; xz component of tensor ( )

double yx; yz component of tensor ( )

double yy; yy component of tensor ( )

double yz; yz component of tensor ( )

double zx; zx component of tensor ( )

double zy; zy component of tensor ( )

double zz; zz component of tensor ( )

2.2.2 Special Member Functions

 Tensor(void);

Sample code:

Tensor a; // Declare an uninitialized

// tensor.

Default constructor for instances of theTensor  class.

Tensor(const double, const double, const double, const

double, const double, const double, const double,

const double, const double);

Sample code:

Tensor a(2., 3., 5.,

A13 A23 A31 A32 A33

A Aij

A11

A12

A13

A21

A22

A23

A31

A32

A33
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1., 9., 11.);

Construct a tensor with the given components. The arguments correspondi
off-diagonal z terms are omitted in the 2-D version.

Tensor(const Tensor&);

Sample code:

Tensor a;

Tensor b = a; // Construct and initialize

This is the copy constructor for objects of class Tensor. It is defined mainly to
hance vectorization on CRAY computers.

Tensor& operator=(const Tensor&);

Sample code:

Tensor a, b;

a = b;

This is the assignment operator for objects of class Tensor. It is defined main
enhance vectorization on CRAY computers.

 Tensor(const SymTensor&);

 Tensor(const AntiTensor&);

Sample code:

SymTensor a;

AntiTensor b;

Tensor c = a, d = b;

Convert a symmetric or antisymmetric tensor to full tensor representation. T
operators become standard conversions that the compiler invokes impl
where needed. However, most operators are explicitly defined for mixed te
types, since this is more efficient.
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These conversions are somewhat dangerous, since useless operations s
Trans(SymTensor) or Tr(AntiTensor ) will be accepted by the compiler
The worst consequence of permitting these conversions is that operations su
Inverse(AntiTensor) will be attempted and result in a singular matrix e
ror. The RHALE++ development team felt that, since these conversions ar
natural, they should be included in PHYSLIB in spite of the potential danger

 Tensor& operator=(const SymTensor&);

 Tensor& operator=(const AntiTensor&);

Sample code:

SymTensor a;

AntiTensor b;

Tensor c, d;

c = a;

d = b;

Assign a symmetric or antisymmetric tensor value to a preexisting tensor
able. If these operations were not defined, the compiler would call the conver
constructors defined above and assign the result, which is less efficient tha
signing the values directly.

 double XX(void) const;

Symbolic notation: Indicial notation:

Sample code:

Tensor A;

printf("The XX component of A is %f", A.XX());

 double XY(void) const;

Symbolic notation: Indicial notation:

Sample code:

Tensor A;

x̂A x̂ A11

x̂A ŷ A12
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printf("The XY component of A is %f", A.XY());

 double XZ(void) const;

Symbolic notation: Indicial notation:

Sample code:

Tensor A;

printf("The XZ component of A is %f", A.XZ());

 double YX(void) const;

Symbolic notation: Indicial notation:

Sample code:

Tensor A;

printf("The YX component of A is %f", A.YX());

 double YY(void) const;

Symbolic notation: Indicial notation:

Sample code:

Tensor A;

printf("The YY component of A is %f", A.YY());

 double YZ(void) const;

Symbolic notation: Indicial notation:

Sample code:

Tensor A;

printf("The YZ component of A is %f", A.YZ());

 double ZX(void) const;

x̂A ẑ A13

ŷA x̂ A21

ŷA ŷ A22

ŷA ẑ A23
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Symbolic notation: Indicial notation:

Sample code:

Tensor A;

printf("The ZX component of A is %f", A.ZX());

 double ZY(void) const;

Symbolic notation: Indicial notation:

Sample code:

Tensor A;

printf("The ZY component of A is %f", A.ZY());

 double ZZ(void) const;

Symbolic notation: Indicial notation:

Sample code:

Tensor A;

printf("The ZZ component of A is %f", A.ZZ());

 void XX(const double);

Symbolic notation: None Indicial notation:

Sample code:

Tensor A;

A.XX(3.); // Set XX component of A to 3.

 void XY(const double);

Symbolic notation: None Indicial notation:

Sample code:

Tensor A;

ẑA x̂ A31

ẑA ŷ A32

ẑA ẑ A33

A11 s←

A12 s←
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A.XY(3.); // Set XY component of A to 3.

 void XZ(const double);

Symbolic notation: None Indicial notation:

Sample code:

Tensor A;

A.XZ(3.); // Set XZ component of A to 3.

 void YX(const double);

Symbolic notation: None Indicial notation:

Sample code:

Tensor A;

A.YX(3.); // Set YX component of A to 3.

 void YY(const double);

Symbolic notation: None Indicial notation:

Sample code:

Tensor A;

A.YY(3.); // Set YY component of A to 3.

 void YZ(const double);

Symbolic notation: None Indicial notation:

Sample code:

Tensor A;

A.YZ(3.); // Set YZ component of A to 3.

 void ZX(const double);

Symbolic notation: None Indicial notation:

A13 s←

A21 s←

A22 s←

A23 s←

A31 s←
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Sample code:

Tensor A;

A.ZX(3.); // Set ZX component of A to 3.

 void ZY(const double);

Symbolic notation: None Indicial notation:

Sample code:

Tensor A;

A.ZY(3.); // Set ZY component of A to 3.

 void ZZ(const double);

Symbolic notation: None Indicial notation:

Sample code:

Tensor A;

A.ZZ(3.); // Set ZZ component of A to 3.

Provide access to components of a tensor through a functional interface.
functions corresponding to off-diagonal z terms do not exist in the 2-D versio
the library, since these components always vanish in 2-D finite element cod

2.2.3 Utility Functions

int fread(Tensor&, FILE*);

int fwrite(const Tensor&, FILE*);

int fread(Tensor*, int, FILE*);

int fwrite(const Tensor*, const int, FILE*);

Sample code:

Tensor a, b, c[2], d[5];

FILE* InFile, OutFile;

fread (a, InFile);

fread (c, 2, InFile);

A32 s←

A33 s←
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fwrite (b, OutFile);

fwrite (d, 5, OutFile);

These overloads provide a convenient interface to thefread() andfwrite()
library functions for binary input/output.

These functions were written to be as consistent as possible with the stan
fread() andfwrite() functions. Thus, they are friends rather than memb
functions, and the integer returned is the number of objects read or written.

2.3 class SymTensor

This class represents symmetric tensors. By providing a separate representation o
metric tensors, we save both memory and computation time, since a symmetric tens
fewer independent components. Since symmetric tensor are simply a special case o
eral tensors, they share the same notation and operations.

Symbolic notation: Indicial notation:

2.3.1 Private Data Members

double xx; xx component of a symmetric tensor ( )

double xy; xy component of a symmetric tensor ( )

double xz; xz component of a symmetric tensor ( )

double yy; yy component of a symmetric tensor ( )

double yz; yz component of a symmetric tensor ( )

double zz; zz component of a symmetric tensor ( )

2.3.2 Special Member Functions

 SymTensor(void);

Sample code:

SymTensor a; // Construct an uninitialized

// SymTensor.

A Aij

A11

A12 A21=

A13 A31=

A22

A23 A32=

A33
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Default constructor for instances of the classSymTensor .

SymTensor(const double, const double, const double,

const double, const double, const double);

Sample code:

SymTensor a(1., 5., 3.,

4., 6.,

5.);

Construct a symmetric tensor with the given components. The arguments c
sponding to off-diagonal z components are omitted in the 2-D version.

SymTensor(const SymTensor&);

Sample code:

SymTensor a;

SymTensor b = a; // Construct and initialize

This is the copy constructor for objects of class SymTensor. It is defined ma
to enhance vectorization on CRAY computers.

SymTensor& operator=(const SymTensor&);

Sample code:

SymTensor a, b;

a = b;

This is the assignment operator for objects of class SymTensor. It is defi
mainly to enhance vectorization on CRAY computers.

 double XX(void) const;

Symbolic notation: Indicial notation:

Sample code:

x̂A x̂ A11
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SymTensor A;

printf("The XX component of A is %f", A.XX());

 double XY(void) const;

Symbolic notation: Indicial notation:

Sample code:

SymTensor A;

printf("The XY component of A is %f", A.XY());

 double XZ(void) const;

Symbolic notation: Indicial notation:

Sample code:

SymTensor A;

printf("The XZ component of A is %f", A.XZ());

 double YY(void) const;

Symbolic notation: Indicial notation:

Sample code:

SymTensor A;

printf("The YY component of A is %f", A.YY());

 double YZ(void) const;

Symbolic notation: Indicial notation:

Sample code:

SymTensor A;

printf("The YZ component of A is %f", A.YZ());

x̂A ŷ A12

x̂A ẑ A13

ŷA ŷ A22

ŷA ẑ A23
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 double ZZ(void) const;

Symbolic notation: Indicial notation:

Sample code:

SymTensor A;

printf("The ZZ component of A is %f", A.ZZ());

 void XX(const double);

Symbolic notation: None Indicial notation:

Sample code:

SymTensor A;

A.XX(3.); // Set XX component of A to 3.

 void XY(const double);

Symbolic notation: None Indicial notation:

Sample code:

SymTensor A;

A.XY(3.); // Set XY component of A to 3.

 void XZ(const double);

Symbolic notation: None Indicial notation:

Sample code:

SymTensor A;

A.XZ(3.); // Set XZ component of A to 3.

 void YY(const double);

Symbolic notation: None Indicial notation:

Sample code:

ẑA ẑ A33

A11 s←

A12 s←

A13 s←

A22 s←
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SymTensor A;

A.YY(3.); // Set YY component of A to 3.

 void YZ(const double);

Symbolic notation: None Indicial notation:

Sample code:

SymTensor A;

A.YZ(3.); // Set YZ component of A to 3.

 void ZZ(const double);

Symbolic notation: None Indicial notation:

Sample code:

SymTensor A;

A.ZZ(3.); // Set ZZ component of A to 3.

Provide access to components of a symmetric tensor through a functional i
face. The functions corresponding to off-diagonal z terms do not exist in the
version of the library, since these components always vanish in 2-D finite elem
codes.

2.3.3 Utility Functions

int fread(SymTensor&, FILE*);

int fwrite(const SymTensor&, FILE*);

int fread(SymTensor*, int, FILE*);

int fwrite(const SymTensor*, const int, FILE*);

Sample code:

SymTensor a, b, c[2], d[5];

FILE* InFile, OutFile;

fread (a, InFile);

A23 s←

A33 s←
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fread (c, 2, InFile);

fwrite (b, OutFile);

fwrite (d, 5, OutFile);

These overloads provide a convenient interface to thefread() andfwrite()
library functions for binary input/output.

These functions were written to be as consistent as possible with the stan
fread() andfwrite() functions. Thus, they are friends rather than memb
functions, and the integer returned is the number of objects read or written.

2.4 class AntiTensor

This class represents antisymmetric tensors. By providing a separate representati
save quite a lot of memory and computation time. Since antisymmetric tensors are a
cial case of general tensors, the notation and operators are identical.

Symbolic notation: Indicial notation:

2.4.1 Private Data Members

double xy; xy component of the tensor ( )

double xz; xz component of the tensor ( )

double yz; yz component of the tensor ( )

2.4.2 Special Member Functions

 AntiTensor(void);

Sample code:

AntiTensor A; // Construct an uninitialized

// AntiTensor

Default constructor for instances of the classAntiTensor .

 AntiTensor(const double, const double, const double);

A Aij

A12 A21–=

A13 A31–=

A23 A32–=
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Sample code:

AntiTensor A(-2., -3., -1.);

Construct an antisymmetric tensor with the given components. The second
third arguments are omitted in 3-D.

AntiTensor(const AntiTensor&);

Sample code:

AntiTensor a;

AntiTensor b = a; // Construct and initialize

This is the copy constructor for objects of class AntiTensor. It is defined ma
to enhance vectorization on CRAY computers.

AntiTensor& operator=(const AntiTensor&);

Sample code:

AntiTensor a, b;

a = b;

This is the assignment operator for objects of class AntiTensor. It is defi
mainly to enhance vectorization on CRAY computers.

 double XY(void) const;

Symbolic notation: Indicial notation:

Sample code:

AntiTensor A;

printf("The XY component of A is %f", A.XY());

 double XZ(void) const;

Symbolic notation: Indicial notation:

Sample code:

x̂A ŷ A12

x̂A ẑ A13
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AntiTensor A;

printf("The XZ component of A is %f", A.XZ());

 double YZ(void) const;

Symbolic notation: Indicial notation:

Sample code:

AntiTensor A;

printf("The YZ component of A is %f", A.YZ());

 void XY(const double);

Symbolic notation: None Indicial notation:

Sample code:

AntiTensor A;

A.XY(3.); // Set XY component of A to 3.

 void XZ(const double);

Symbolic notation: None Indicial notation:

Sample code:

SymTensor A;

A.XZ(3.); // Set XZ component of A to 3.

 void YZ(const double);

Symbolic notation: None Indicial notation:

Sample code:

AntiTensor A;

A.YZ(3.); // Set YZ component of A to 3.

ŷA ẑ A23

A12 s←

A13 s←

A23 s←
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Provide access to components of an antisymmetric tensor through a function
terface. The functions corresponding to off-diagonal z terms do not exist in th
D version of the library, since these components always vanish in 2-D finite
ment codes.

2.4.3 Utility Functions

int fread(AntiTensor&, FILE*);

int fwrite(const AntiTensor&, FILE*);

int fread(AntiTensor*, int, FILE*);

int fwrite(const AntiTensor*, const int, FILE*);

Sample code:

AntiTensor a, b, c[2], d[5];

FILE* InFile, OutFile;

fread (a, InFile);

fread (c, 2, InFile);

fwrite (b, OutFile);

fwrite (d, 5, OutFile);

These overloads provide a convenient interface to thefread() andfwrite()
library functions for binary input/output.

These functions were written to be as consistent as possible with the stan
fread() andfwrite() functions. Thus, they are friends rather than memb
functions, and the integer returned is the number of objects read or written.
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2.5 Operator Overload Functions

 Vector operator-(void) const;

Symbolic notation: Indicial notation:

Sample code:

Vector a, b;

a = -b;

Return the opposite of a vector.

 Tensor operator-(void) const;

 SymTensor operator-(void) const;

 AntiTensor operator-(void) const;

Symbolic notation: Indicial notation:

Sample code:

Tensor A, B;

A = -B;

Return the opposite of a tensor.

Vector operator*(const Vector&, const double);

Vector operator*(const double, const Vector&);

Symbolic notation: Indicial notation:

Sample code:

Vector a, b;

double c;

a = b * c;

Return the product of a scalar and a vector. This operation commutes (as c
seen from its indicial representation) but C++ makes no assumptions about
mutivity of operations; hence, both orderings must be defined. C++doesassume

a– ai–

A– Aij–

ac aic
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the usual rules of associativity for overloaded operators (thusa*b*c means

(a*b)*c  or ).

 Vector& operator*=(const double);

Symbolic notation: Indicial notation:

Sample code:

Vector a;

double c;

a *= c;

Replace a vector by its product with a scalar.

Vector operator/(const Vector&, const double);

Symbolic notation: Indicial notation:

Sample code:

Vector a, b;

double c;

a = b/c;

Return the quotient of a vector with a scalar. The case results in a div
by-zero error, which is handled differently on different computers.

 Vector& operator/=(const double);

Symbolic notation: Indicial notation:

Sample code:

Vector a;

double c;

a /= c;

Replace a vector by its quotient with a scalar. The case results in a div
by-zero error, which is handled differently on different computers.

a b•( )c

a ac← ai aic←

a c⁄ ai c⁄

c 0=

a a c⁄← ai ai c⁄←

c 0=
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double operator*(const Vector&, const Vector&);

Symbolic notation: Indicial notation:

Sample code:

Vector a, b;

double c;

c = a * b;

Return the dot or inner product of two vectors.

Tensor operator%(const Vector&, const Vector&);

Symbolic notation: Indicial notation:

Sample code:

Vector a, b;

Tensor c;

c = a % b;

Return the tensor or outer product of two vectors. The operator ‘%’ represents the
modulo operation when applied to integers. It was selected to represent the
product of vectors because the compiler assigns it the same precedence as
plication.

Vector operator+(const Vector&, const Vector&);

Symbolic notation: Indicial notation:

Sample code:

Vector a, b, c;

a = b + c;

Return the sum of two vectors.

a b• aibi

a b⊗ aibj

a b+ ai bi+
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 Vector& operator+=(const Vector&);

Symbolic notation: Indicial notation:

Sample code:

Vector a, b;

a += b;

Replace a vector by its sum with another vector.

Vector operator-(const Vector&, const Vector&);

Symbolic notation: Indicial notation:

Sample code:

Vector a, b, c;

a = b - c;

Return the difference of two vectors.

 Vector& operator-=(const Vector&);

Symbolic notation: Indicial notation:

Sample code:

Vector a, b;

a -= b;

Replace a vector by its difference with a vector.

int operator==(const Vector&, const Vector&);

Symbolic notation: Indicial notation:

Sample code:

Int is_equal;

Vector a, b;

a a b+← ai ai bi+←

a b– ai bi–

a a b–← ai ai bi–←

a==b ai==bi
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is_equal = (a == b);

Determine if two vectors are equal.

int operator!=(const Vector&, const Vector&);

Symbolic notation: Indicial notation:

Sample code:

Int is_unequal;

Vector a, b;

is_unequal = (a != b);

Determine if two vectors are unequal.

ostream& operator<<(ostream&, const Vector&);

Sample code:

Vector a;

ofstream str("output.dat");

str << a;

Write a vector to an output stream in the form (x,y,z).

istream& operator>>(istream&, Vector&);

Sample code:

Vector a;

ifstream str("input.dat");

str >> a;

Read a vector from an input stream in the form (x,y,z).

Tensor operator*(const Tensor&, const double);

SymTensor operator*(const SymTensor&, const double);

a bi≠ ai bi≠
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AntiTensor operator*(const AntiTensor&, const double);

Tensor operator*(const double, const Tensor&);

SymTensor operator*(const double, const SymTensor&);

AntiTensor operator*(const double, const AntiTensor&);

Symbolic notation: Indicial notation:

Sample code:

Tensor A, B;

double c;

B = A * c;

Return the product of a tensor with a scalar.

Tensor& operator*=(const double);

SymTensor& operator*=(const double);

AntiTensor& operator*=(const double);

Symbolic notation: Indicial notation:

Sample code:

Tensor A;

double c;

A *= c;

Replace a tensor by its product with a scalar.

Tensor operator/(const Tensor&, const double);

SymTensor operator/(const SymTensor&, const double);

AntiTensor operator/(const AntiTensor&, const double);

Symbolic notation: Indicial notation:

Sample code:

Tensor A, B;

Ac Aij c

A A c← Aij Aij c←

A c⁄ Aij c⁄
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double c;

B = A/c;

Return the quotient of a tensor with a scalar. The case results in a div
by-zero error, which is handled differently by different computers.

Tensor operator/=(const double);

SymTensor& operator/=(const double);

AntiTensor& operator/=(const double);

Symbolic notation: Indicial notation:

Sample code:

Tensor A;

double c;

A /= c;

Replace a tensor by its quotient with a scalar. The case results in a div
by-zero error, which is handled differently by different computers.

Vector operator*(const Tensor&, const Vector&);

Vector operator*(const AntiTensor&, const Vector&);

Vector operator*(const SymTensor&, const Vector&);

Symbolic notation: Indicial notation:

Sample code:

Tensor A;

Vector b, c;

c = A * b;

Return the result of left-multiplying a vector by a tensor. There are three ca
corresponding to the three varieties of tensor implemented in PHYSLIB; all
identical in notation and usage, however.

Vector operator*(const Vector&, const Tensor&);

c 0=

A A c⁄← Aij Aij c⁄←

c 0=

Ab Aij bj
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Vector operator*(const Vector&, const AntiTensor&);

Vector operator*(const Vector&, const SymTensor&);

Symbolic notation: Indicial notation:

Sample code:

Vector a;

Tensor b, c;

c = a * b;

Return the result of right-multiplying a vector by a tensor.

Tensor operator*(const Tensor&, const Tensor&);

Tensor operator*(const SymTensor&, const Tensor&);

Tensor operator*(const Tensor&, const SymTensor&);

Tensor operator*(const SymTensor&, const SymTensor&);

Tensor operator*(const AntiTensor&, const Tensor&);

Tensor operator*(const Tensor&, const AntiTensor&);

Tensor operator*(const AntiTensor&, const SymTensor&);

Tensor operator*(const SymTensor&, const AntiTensor&);

Symbolic notation: Indicial notation:

Sample code:

Tensor A, B, C;

C = A * B;

Return the product of a tensor with a tensor.

Tensor operator+(const Tensor&, const Tensor&);

Tensor operator+(const SymTensor&, const Tensor&);

Tensor operator+(const Tensor&, const SymTensor&);

SymTensor operator+(const SymTensor&, const SymTensor&);

Tensor operator+(const AntiTensor&, const Tensor&);

aB ajBji

AB Aij Bjk
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Tensor operator+(const Tensor&, const AntiTensor&);

Tensor operator+(const AntiTensor&, const SymTensor&);

Tensor operator+(const SymTensor&, const AntiTensor&);

AntiTensor operator+(const AntiTensor&, const AntiTen-

sor&);

Symbolic notation: Indicial notation:

Sample code:

Tensor A, B, C;

C = A + B;

Return the sum of two tensors.

 Tensor& operator+=(const Tensor&);

 Tensor& operator+=(const SymTensor&);

 SymTensor& operator+=(const SymTensor&);

 Tensor& operator+=(const AntiTensor&);

 AntiTensor& operator+=(const AntiTensor&);

Symbolic notation: Indicial notation:

Sample code:

Tensor A, B;

A += B;

Replace a tensor by its sum with another tensor.

Tensor operator-(const Tensor&, const Tensor&);

Tensor operator-(const SymTensor&, const Tensor&);

Tensor operator-(const Tensor&, const SymTensor&);

SymTensor operator-(const SymTensor&, const SymTensor&);

Tensor operator-(const AntiTensor&, const Tensor&);

Tensor operator-(const Tensor&, const AntiTensor&);

A B+ Aij Bij+

A A B+← Aij Aij Bij+←
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Tensor operator-(const AntiTensor&, const SymTensor&);

Tensor operator-(const SymTensor&, const AntiTensor&);

AntiTensor operator-(const AntiTensor&, const AntiTen-

sor&);

Symbolic notation: Indicial notation:

Sample code:

Tensor A, B, C;

C = A - B;

Return the difference of two tensors.

 Tensor& operator-=(const Tensor&);

 Tensor& operator-=(const SymTensor&);

 SymTensor& operator-=(const SymTensor&);

 Tensor& operator-=(const AntiTensor&);

 AntiTensor& operator-=(const AntiTensor&);

Symbolic notation: Indicial notation:

Sample code:

Tensor A, B;

A -= B;

Replace a tensor by its difference with another tensor.

int operator==(const Tensor&, const Tensor&);

int operator==(const SymTensor&, const SymTensor&);

int operator==(const AntiTensor&, const AntiTensor&);

Symbolic notation: Indicial notation:

Sample code:

Int is_equal;

A B– Aij Bij–

A A B–← Aij Aij Bij–←

a==b ai==bi
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Vector a, b;

is_equal = (a == b);

Determine if two vectors are equal..

int operator!=(const Tensor&, const Tensor&);

int operator!=(const SymTensor&, const SymTensor&);

int operator!=(const AntiTensor&, const AntiTensor&);

Symbolic notation: Indicial notation:

Sample code:

Int is_unequal;

Vector a, b;

is_unequal = (a != b);

Determine if two vectors are unequal..

a bi≠ ai bi≠
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2.6 Methods

Vector Cross(const Vector&, const Vector&);

Symbolic notation: Indicial notation:

Sample code:

Vector a, b, c;

c = Cross(a, b);

Vector or cross product of two vectors. The symbol is the permutation s
bol, which is 0 if any of the , , or are equal, 1 if they are an even permuta
of the sequence 1, 2, 3, and -1 if they are an odd permutation of the sequenc
3. For example, ; ; and . The cross product is distributi
and associative but not commutative.

Vector Dual(const Tensor&);

Symbolic notation: Indicial notation:

Sample code:

Tensor A;

Vector b;

b = Dual(A);

Any tensor can be split into a symmetric part and an antisymme

part . The dual of a tensor is a vector which depends uniquely on

antisymmetric part.

AntiTensor Dual(const Vector&);

Symbolic notation: Indicial notation:

Sample code:

Vector a;

AntiTensor B;

B = Dual(a);

a b× εi jkajbk

εi jk

i j k

ε122 0= ε123 1= ε213 1–=

Dual A( ) εi jk Ajk

A
1
2
--- A A T+( )

1
2
--- A A T–( )

Dual a( ) εi jkak
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Dual of a vector. It can be proved that . The concept of the d

is closely related to the cross product, since .

double Norm(const Vector&);

Symbolic notation: Indicial notation:

Sample code:

Vector a;

double b;

b = Norm(a);

Returns the magnitude or norm of a vector. This is calculated as the square
of the dot product of the vector with itself.

double Norm(const Tensor&);

double Norm(const SymTensor&);

double Norm(const AntiTensor&);

Symbolic notation: Indicial notation:

Sample code:

Tensor A;

double c;

c = Norm(A);

Returns the norm of a tensor. This is calculated as the square root of the s
product of the tensor with itself.

double Det(const Tensor&);

double Det(const SymTensor&);

Symbolic notation: Indicial notation:

Sample code:

Tensor A;

Dual Duala( )( ) 2a=

bDual a( ) a b×=

a aiai

A Aij Aij

det A[ ] 1
6
---ε

i jk
εlmnAil AjmAkn
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double c;

c = Det(A);

Determinant of a tensor. It is always zero for an antisymmetric tensor.

Tensor Inverse(const Tensor&);

SymTensor Inverse(const SymTensor&);

Symbolic notation:

Sample code:

Tensor A, B;

B = Inverse(A);

Inverse of a tensor. If the tensor is singular, a divide-by-zero error will res
(which may be ignored on machines using the IEEE floating point standard).
tisymmetric tensors are always singular.

double Tr(const Tensor&);

double Tr(const SymTensor&);

Symbolic notation: Indicial notation:

Sample code:

Tensor A;

double c;

c = Tr(A);

Trace of a tensor. The trace of an antisymmetric tensor is always zero.

Tensor Trans(const Tensor&);

Symbolic notation: Indicial notation:

Sample code:

Tensor A, B;

B = Trans(A);

A 1–

TrA Akk

AT Ajk
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Transpose of a tensor. By definition, the transpose of a symmetric tensor i
tensor, while the transpose of an antisymmetric tensor is the opposite of the
sor.

SymTensor Sym(const Tensor&);

Symbolic notation: Indicial notation:

Sample code:

Tensor A, B;

B = Sym(A);

Symmetric part of a tensor.

AntiTensor Anti(const Tensor&);

Symbolic notation: Indicial notation:

Sample code:

Tensor A, B;

B = Anti(A);

Antisymmetric part of a tensor.

double Colon(const Tensor&, const Tensor&);

double Colon(const Tensor&, const SymTensor&);

double Colon(const SymTensor&, const Tensor&);

double Colon(const SymTensor&, const SymTensor&);

double Colon(const Tensor&, const AntiTensor&);

double Colon(const AntiTensor&, const Tensor&);

double Colon(const AntiTensor&, const AntiTensor&);

Symbolic notation: Indicial notation:

Sample code:

1
2
--- A A T+( ) 1

2
--- Aij Aji+( )

1
2
--- A A T–( ) 1

2
--- Aij Aji–( )

A:B Aij Bij
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Tensor A, B;

double c;

c = Colon(A, B);

Inner or scalar product of two tensor, also written . The scalar produc
a symmetric and an antisymmetric tensor is always zero.

Tensor Deviator(const Tensor&);

SymTensor Deviator(const SymTensor&);

Symbolic notation: Indicial notation:

Sample code:

Tensor A, B;

B = Deviator(A);

Deviatoric part of a tensor. The tensor is the identity tensor, which is the un
tensor that transforms any vector into itself and whose components are repre
ed by the Kronecker delta . The deviator of an antisymmetric tensor is the
sor itself.

double It(const Tensor&);

double It(const SymTensor&);

double It(const AntiTensor&);

Symbolic notation: Indicial notation:

Sample code:

Tensor A;

double c;

c = It(A);

double IIt(const Tensor&);

double IIt(const SymTensor&);

double IIt(const AntiTensor&);

Tr ATB( )

A
1
3
---Tr A( )1– Aij

1
3
---Akkδi j–

1

δi j

I t Tr A( )= Akk
56



The PHYSLIB Library

acter-
an be
that

ter-

ctors
pec-
Symbolic notation: Indicial notation:

Sample code:

Tensor A;

double c;

c = IIt(A);

double IIIt(const Tensor&);

double IIIt(const SymTensor&);

double IIIt(const AntiTensor&);

Symbolic notation: Indicial notation:

Sample code:

Tensor A;

double c;

c = IIIt(A);

Scalar invariants of a tensor. These are the coefficients appearing in the char
istic equation of a tensor. They are the only three independent scalars that c
formed in a frame-independent manner from a single tensor; all other scalars
can be formed from a tensor are functions of the scalar invariants.

The first invariant is a synonym for the trace; the third is a synonym for the de
minant. Only the second invariant is nonzero for an antisymmetric tensor.

The characteristic equation itself takes the form

(29)

and its roots are the principal values of the tensor.

Tensor Eigen(const SymTensor&, Vector&);

This function returns the orthonormal tensor whose columns are the eigenve
of the given symmetric matrix. The principal values are placed in the vector s
ified by the second argument. Thus, if

(30)

II t
1
2
--- A 2 TrA( )2–( )=

1
2
--- Aij Aij Akk( )2–( )

III t DetA=
1
6
---εi jkεlmnAil AjmAkn

λ3 I tλ2– II tλ– III t– 0=

A EigenB ei,( )=
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(31)

is a diagonal tensor whose elements are given by the vector .

2.7 Predefined Constants

const int DIMENSION = 3;

This is an integer constant giving the dimensionality of the library. It is defined
be equal to 2 if the 2-D version of the library is being used.

extern const Vector ZeroVector;

extern const Tensor ZeroTensor;

extern const AntiTensor ZeroAntiTensor;

extern const SymTensor ZeroSymTensor;

These are objects of the various classes whose components are all zero.

extern const Tensor IdentityTensor;

extern const SymTensor IdentitySymTensor;

These are objects of the given classes corresponding to the identity tensor, w
is the tensor that transforms any vector into itself. The off-diagonal compon
are zero and the diagonal components are equal to one in any coordinate sy
The identity tensor is symmetric and is given in both symmetric and full ten
representations.

D ATBA=

ei
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3. Using the PHYSLIB classes

The classes defined in PHYSLIB are essentially new arithmetic types analogous t
predefinedint, float, anddouble types. Their use is illustrated by the progra
fragment below:

#include “physlib.h” // The example is 3-D

/* ... */

const Tensor One(1., 0., 0.,

0., 1., 0.,

0., 0., 1.);

Tensor GradVel; // Velocity gradient

SymTensor Deformation, deformation, Stretch, Stress;

AntiTensor W, Omega;

Vector omega;

/* ... */

Deformation = Sym(GradVel);

W = Anti(GradVel);

/* Integrate rotation and stretch tensors */

omega = 2.*Inverse(Tr(Stretch)*One - Stretch) *

Dual(GradVel*Stretch);

Omega = 0.5*Dual(omega);

Rotation = Inverse(One - 0.5*delT*Omega)*(One +
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 0.5*delT*Omega)*Rotation;

Stretch += Sym(delT*(GradVel*Stretch-Stretch*Omega));

/* Calculate unrotated deformation and determine rotated

stress */

deformation = Sym(Trans(Rotation)*Deformation*

Rotation);

Stress = Sym(Rotation *

ComputeStress(deformation, delT) * Trans(Rotation));

This particular program fragment is taken from the internal forces routine in RHALE
The velocity gradient is decomposed into its rotation and stretch rate components, t
tation and stretch are updated to the new time, and the deformation rate is rotated
material configuration for the calculation of the new stress (which is done in the use
fined routineSymTensor ComputeStress(SymTensor&, double) ). The new
stress is then rotated back to the laboratory configuration.

3.1 Useless Operations

Certain operations are mathematically well-defined but useless. For example, the tr
the determinant of an antisymmetric tensor is well-defined but trivially zero. The tr
pose of a symmetric tensor is itself. These operations are not explicitly define
PHYSLIB, but if the programmer were to write code such as

Antitensor a;

double b;

/* ... */

b = Tr(a);

the code would compile and run normally. The compiler recognizes that there is a sta
conversion fromAntiTensor to Tensor . This conversion is called fora and the result
is passed toTr(Tensor) , which returns the correct value of 0.

Obviously, programmers should avoid such useless constructs, since they needless
sume time and memory. However, instantiation oftemplate functionsmay require such
constructs, and the standard conversions toTensor will ensure that these compile and
run successfully.
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A
AntiTensor Anti(const Tensor) 55
AntiTensor Dual(const Vector) 52
AntiTensor operator-(const AntiTensor, const AntiTensor) 50
AntiTensor operator-(void) 41
AntiTensor operator*(const AntiTensor, const double) 46
AntiTensor operator*(const double, const AntiTensor) 46
AntiTensor operator+(const AntiTensor, const AntiTensor) 49
AntiTensor operator/(const AntiTensor, const double) 46
AntiTensor& operator*=(const double) 46
AntiTensor& operator+=(const AntiTensor) 49
AntiTensor& operator/=(const double) 47
AntiTensor& operator=(const AntiTensor&) 38
AntiTensor& operator-=(const AntiTensor) 50
AntiTensor(const AntiTensor&) 38
AntiTensor(const double, const double, const double) 37
AntiTensor(void) 37

D
double Colon(const AntiTensor, const AntiTensor) 55
double Colon(const SymTensor, const SymTensor) 55
double Colon(const Tensor, const Tensor) 55
double Det(const SymTensor) 53
double Det(const Tensor) 53
double IIIt(const AntiTensor&) 57
double IIIt(const SymTensor&) 57
double IIIt(const Tensor&) 57
double IIt(const AntiTensor&) 56
double IIt(const SymTensor&) 56
double IIt(const Tensor&) 56
double It(const AntiTensor&) 56
double It(const SymTensor&) 56
double It(const Tensor&) 56
double Norm(const Vector) 53
double operator*(const Vector, const Vector) 43
double Tr(const SymTensor) 54
double Tr(const Tensor) 54
double X(void) 22
double XX(void) 27, 33
double XY(const double) 39
double XY(void) 27, 34, 38
double XZ(const double) 39
double XZ(void) 28, 34, 38
double Y(void) 23
double YX(void) 28
double YY(void) 28, 34
65



double YZ(const double) 39
double YZ(void) 28, 34, 39
double Z(void) 23
double ZX(void) 28
double ZY(void) 29
double ZZ(void) 29, 35

I
int fread(AntiTensor&, FILE*) 40
int fread(AntiTensor*, int, FILE*) 40
int fread(SymTensor&, FILE*) 36
int fread(SymTensor*, int, FILE*) 36
int fread(Tensor&, FILE*) 31
int fread(Tensor*, int, FILE*) 31
int fread(Vector&, FILE*) 24
int freadI(Vector*, int, FILE*) 24
int fwrite(const AntiTensor*, const int, FILE*) 40
int fwrite(const AntiTensor, FILE*) 40
int fwrite(const SymTensor*, const int, FILE*) 36
int fwrite(const SymTensor, FILE*) 36
int fwrite(const Tensor*, const int, FILE*) 31
int fwrite(const Tensor, FILE*) 31
int fwrite(const Vector*, const int, FILE*) 24
int fwrite(const Vector, FILE*) 24
int operator!=(const AntiTensor&, const AntiTensor&) 51
int operator!=(const SymTensor&, const SymTensor&) 51
int operator!=(const Tensor&, const Tensor&) 51
int operator!=(const Vector&, const Vector&) 45
int operator==(const AntiTensor&, const AntiTensor&) 50
int operator==(const SymTensor&, const SymTensor&) 50
int operator==(const Tensor&, const Tensor&) 50
int operator==(const Vector&, const Vector&) 44
istream& operator>>(istream&, Vector&) 45

O
ostream& operator 45

S
SymTensor Deviator(const SymTensor) 56
SymTensor Inverse(const SymTensor) 54
SymTensor operator-(const SymTensor, const SymTensor) 49
SymTensor operator-(void) 41
SymTensor operator*(const double, const SymTensor) 46
SymTensor operator*(const SymTensor, const double) 45
SymTensor operator+(const SymTensor, const SymTensor) 48
SymTensor operator+=(const SymTensor) 49
SymTensor operator/(const SymTensor, const double) 46
SymTensor Sym(const Tensor) 55
SymTensor& operator*=(const double) 46
SymTensor& operator/=(const double) 47
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SymTensor& operator-=(const SymTensor) 50
SymTensor(const double, const double, ... , const double) 33
SymTensor(const SymTensor&) 33
SymTensor(void) 32

T
Tensor Deviator(const Tensor) 56
Tensor Eigen(const SymTensor, Vector&) 57
Tensor Inverse(const Tensor) 54
Tensor operator%(const Vector, const Vector) 43
Tensor operator-(const AntiTensor, const SymTensor) 50
Tensor operator-(const AntiTensor, const Tensor) 49
Tensor operator-(const SymTensor, const AntiTensor) 50
Tensor operator-(const SymTensor, const Tensor) 49
Tensor operator-(const Tensor, const AntiTensor) 49
Tensor operator-(const Tensor, const SymTensor) 49
Tensor operator-(const Tensor, const Tensor) 49
Tensor operator-(void) 41
Tensor operator*(const AntiTensor, const SymTensor) 48
Tensor operator*(const AntiTensor, const Tensor) 48
Tensor operator*(const double, const Tensor) 46
Tensor operator*(const SymTensor, const AntiTensor) 48
Tensor operator*(const SymTensor, const SymTensor) 48
Tensor operator*(const SymTensor, const Tensor) 48
Tensor operator*(const Tensor, const AntiTensor) 48
Tensor operator*(const Tensor, const double) 45
Tensor operator*(const Tensor, const SymTensor) 48
Tensor operator*(const Tensor, const Tensor) 48
Tensor operator+(const AntiTensor, const SymTensor) 49
Tensor operator+(const AntiTensor, const Tensor) 48
Tensor operator+(const SymTensor, const AntiTensor) 49
Tensor operator+(const SymTensor, const Tensor) 48
Tensor operator+(const Tensor, const AntiTensor) 49
Tensor operator+(const Tensor, const SymTensor) 48
Tensor operator+(const Tensor, const Tensor) 48
Tensor operator/(const Tensor, const double) 46
Tensor operator/=(const double) 47
Tensor Trans(const Tensor) 54
Tensor& operator*=(const double) 46
Tensor& operator+=(const AntiTensor) 49
Tensor& operator+=(const SymTensor) 49
Tensor& operator+=(const Tensor) 49
Tensor& operator-=(const AntiTensor) 50
Tensor& operator=(const AntiTensor) 27
Tensor& operator-=(const SymTensor) 50
Tensor& operator=(const SymTensor) 27
Tensor& operator=(const Tensor&) 26
Tensor& operator-=(const Tensor) 50
Tensor(const AntiTensor) 26
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Tensor(const double, const double, ..., const double) 25
Tensor(const SymTensor) 26
Tensor(const Tensor&) 26
Tensor(void) 25

V
Vector Cross(const Vector, const Vector) 52
Vector Dual(const Tensor) 52
Vector operator-(const Vector, const Vector) 44
Vector operator-(void) 41
Vector operator*(const AntiTensor, const Vector) 47
Vector operator*(const double, const Vector) 41
Vector operator*(const SymTensor, const Vector) 47
Vector operator*(const Tensor, const Vector) 47
Vector operator*(const Vector, const AntiTensor) 48
Vector operator*(const Vector, const double) 41
Vector operator*(const Vector, const SymTensor) 48
Vector operator*(const Vector, const Tensor) 47
Vector operator+(const Vector, const Vector) 43
Vector operator/(const Vector, const double) 42
Vector& operator*=(const double) 42
Vector& operator+=(const Vector) 44
Vector& operator/=(const double) 42
Vector& operator=(const Vector&) 22
Vector& operator-=(const Vector) 44
Vector(const double, const double, const double) 22
Vector(const Vector&) 22
Vector(void) 21
void XX(const double) 29, 35
void XY(const double) 29, 35
void XZ(const double) 30, 35
void YX(const double) 30
void YY(const double) 30, 35
void YZ(const double) 30, 36
void Z(const double) 23
void ZX(const double) 30
void ZY(const double) 31
void ZZ(const double) 31, 36

X
X(const double) 23

Y
Y(const double) 23

Z
Z(void) 22
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